UN BUEN PROFESIONAL . PRECISA DE UNA BUENA DOCUMENTACION TECNICA.

Para la compra de cuaquier libro de este blogg puede mandar un correo electronico a info@ingenieriayarte.com o a traves de nuestra pagina web. www.ingenieriayarte.com indicandonos nombre, direccion, poblacion y telefono de contacto .Dentro de España los envios son realizados por mensajeria 24 horas a cargo de MRW. Canarias y Ceuta los envios son por Correos España mediante Paquete Azu

Para cualquier envio Internacional los envios son por Agencia de transporte a su domicilio.Puede efectuar su pedido a traves de www.ingenieriayarte.com de forma comoda calcula los gastos de envio




lunes, 9 de diciembre de 2013


ingenieria_arte: Mechanical Excavation in Mining and Civil Industries
  
Mechanical Excavation in Mining anAutor: Bilgin,Nuh,Copur,Hanifi,Balci,Cemald Civil Industries


The secret to streamlined scheduling of mining and civil engineering projects is a solid understanding of the basic concepts of rock cutting mechanics. Comparing theoretical values with experimental and real-world results, Mechanical Excavation in Mining and Civil Industries thoroughly explains various rock cutting theories developed for chisel, conical, disc, and button cutters. The authors provide numerical examples on the effect of independent variables on dependent variables, as well as numerical and solved examples from real-life mining and civil engineering projects using equipment such as:
    Hard- and soft-ground tunnel boring machines (TBMs)
    Roadheaders
    Shearers
    Ploughs
    Chain saws
    Raise borers
    Impact hammers
    Large-diameter drill rigs
    Microtunnel boring machines
This book assists students and practicing engineers in selecting the most appropriate machinery for a specific job and predicting machine performance to ensure efficient extraction, and offers background information on rock cutting mechanics and different mechanical miners.
The secret to streamlined scheduling of mining and civil engineering projects is a solid understanding of the basic concepts of rock cutting mechanics. Comparing theoretical values with experimental and real-world results, Mechanical Excavation in Mining and Civil Industries thoroughly explains various rock cutting theories developed for chisel, conical, disc, and button cutters. The authors provide numerical examples on the effect of independent variables on dependent variables, as well as numerical and solved examples from real-life mining and civil engineering projects using equipment such as:
    Hard- and soft-ground tunnel boring machines (TBMs)
    Roadheaders
    Shearers
    Ploughs
    Chain saws
    Raise borers
    Impact hammers
    Large-diameter drill rigs
    Microtunnel boring machines
This book assists students and practicing engineers in selecting the most appropriate machinery for a specific job and predicting machine performance to ensure efficient extraction, and offers background information on rock cutting mechanics and different mechanical miners.
Contents
Preface
Acknowledgments
Authors

1.Introduction

1.1 General
1.2 Historical Perspective on the Science of Rock-Cutting Mechanics and Mechanical Miners
1.3 Classification and Comparison of Fragmentation Methods
1.4 Classification of Mechanical Miners
1.5 Classification of Cutting Tools
1.6 Future of Science of Rock-Cutting Mechanics and Excavation Machines
References

2. Site Investigations for Mechanized Excavation Projects

2.1 Background
2.2 Stages of Site Investigations
2.2.1 Phase I: Feasibility
2.2.2 Phases II: Preliminary Design
2.2.3 Phases III: Final Design
2.2.4 Phase IV: Construction
2.3 Field Investigations
2.4Laboratory Investigations
2.5 Reporting of Site Investigations
2.5.1 Geotechnical Data Report
2.5.2 Geotechnical Baseline Report
2.5.3 Geotechnical Interpretive Report
2.5.4 Geotechnical Design Summary Report
References

3. Physical and Mechanical Properties of Rocks, Soils, and Coals

3.1 Rocks
3.1.1 Uniaxial Compressive Strength
3.1.2 Indirect (Brazilian) Tensile Strength
3.1.3 PL Strength Index
3.1.4 Cerchar Abrasivity Index
3.1.5 NCB Cone Indenter Hardness Index
3.1.6 Schmidt Hammer Rebound Hardness
3.1.7 Shore Scleroscope Hardness
3.1.8 Density, Porosity, and Water Content
3.2 Soils
3.2.1 Grain Size Distribution
3.2.2 Clay Minerals
3.2.3 Permeability
3.3 Coal
3.3.1 Compressive Strength of Coal
3.3.2 Tensile Strength of Coal
3.3.3 PL Strength of Coal
3.3.4 Schmidt Hammer Values of Coal
3.3.5 CIH of Coal
3.3.6 Impact Strength Index of Coal
References

4. Rock-Cutting Tools and Theories

4.1 General
4.2 Rock-Breakage Mechanism by Mechanical Tools
4.3 Simple Chisel Cutters
4.4 Radial Cutters and Complex-Shaped Pick Cutters.
4.5 Conical Cutters or Point Attack Tools
4.5.1 Estimation of Conical Cutter Forces and Specific Energy Empirically from Rock Properties
4.5.2 Relative Efficiency of Chisel Cutters against Conical Cutters
4.6 V-Type Disk Cutters
4.7 Constant-Cross-Section Disk Cutters
4.7.1 Model Proposed by Wijk
4.7.2 Model Proposed by Rostami–Ozdemir
4.8 Efficiency of Chisel Cutters against Disk Cutters
4.9 Practical Considerations for an Efficient Rock-Cutting Process
4.10 Practical Examples of Using Cutting Theories for Prediction of Tool Forces, Specific Energy
4.10.1 Numerical Example 1
4.10.1.1 Solution
4.10.1.2 For Chisel Picks
4.10.1.3 For Conical Cutters
4.10.2 Numerical Example 2
4.10.2.1 For Chisel Picks
4.10.2.2 For Conical Cutters
4.10.2.3 Practical Implication
4.10.3 Numerical Example 3
4.10.3.1 Solution
4.10.4 Numerical Example 4
4.10.4.1 Solution
4.10.5 Numerical Example 5
4.10.5.1 Solution
References

5. Laboratory Rock-Cutting Tests

5.1 General Introduction on Performance Prediction Methods for Mechanical Miners
5.2 Rock-Cutting Experiments
5.2.1 Small-Scale Linear Rock-Cutting Tests (Core-Cutting Tests)
5.2.2 Full-Scale Linear Rock-Cutting Tests
5.2.3 Portable Linear Rock-Cutting Tests
5.2.4 Cutting Tests with a Horizontal Drill Rig
5.3 Numerical Examples
5.3.1 Numerical Example for a Surface Miner
5.3.1.1 Solution of Numerical Example 5.3.1.
5.3.2 Numerical Example for a Trench-Cutter
5.3.2.1 Solution of Numerical Example 5.3.2
References

6. Wear of Cutting Tools

6.1Metallurgical Properties of Tungsten Carbide Tools Affecting Wear Properties
6.2 Some Theoretical Concepts on the Wear of Chisel Cuttersand Point Attack Tools
6.3Laboratory Cutting Experiments with Chisel Cutters for Wear Studies
6.5 Abrasivity of Rocks Affecting Cutter Wear
6.5.1 Schimazek Abrasivity Index
6.5.2 Cerchar Abrasivity Index
6.5.3 NTNU Abrasivity Index
6.5.4 Methodology for Estimating the Abrasiveness of Soils for TBM Tunneling
6.5.4.1 New NTNU Soil Abrasion Test
6.5.4.2 Soil Abrasivity Test Developed by Rostami et al. (2012)
6.6 Field Studies on the Wear of Conical Cutters and a Guide for Cutter Selection
6.7 Numerical Examples
6.7.1 Numerical Example 1
6.7.1.1 Solution
6.7.2 Numerical Example 2
6.7.2.1 Solution
References

7. Roadheaders

7.1 General
7.2 Advantages, Application Areas, and Limits of Roadheaders
7.3 Basic Units and Mechanical Structure of Roadheaders
7.4 Roadheader Cutterheads, Weights, and Technical
Specifications
7.5 Cutting Tools Used on Roadheaders
7.6 Some Operational Features of Roadheaders
7.7 Roadheader Performance
7.8 Numerical Examples on Predicting Performance of Roadheaders
7.8.1 Numerical Example on Roadheader Selection and Performance Prediction
7.8.1.1 Solution of Numerical Example 7.8.1
7.8.2Numerical Example on Predicting Performance of a Transverse Roadheader Excavating Evaporitic Rocks
7.8.2.1 Solution of Numerical Example 7.8.2
References

8. Impact Hammers


8.1 Background
8.2 Working Principles and Operational Features
8.3 Classification and Technical Features
8.4 Performance Prediction and Practical Examples for Impact Hammers
8.4.1 A Numerical Example to Calculate Hammer Efficiency
8.4.1.1 Solution
8.4.2 A Numerical Example to Calculate Impact Hammer Performance
8.4.3 A Numerical Example to Select a Proper Hydraulic Hammer and Excavator for a Specific Job
8.4.3.1 Solution
8.4.4 A Numerical Example to Select the Proper Hydraulic Hammer and Excavator for a Specific Job
8.4.4.1 Solution
References

9. Hard Rock TBMs

9.1 Classification, Working Principles, and Operational Features
9.1.1 Open-Type (Open Gripper, Kelly Beam, or Main Beam) TBMs
9.1.2 Single-Shield TBMs
9.1.3 Double-Shield TBMs
9.1.4 Single-Shield TBMs Working in Open and Closed Modes (EPB Mode)
9.2 Technical Characteristics of Hard Rock TBMs
9.3 Performance Predictions for Hard Rock TBMs and Practical Examples
9.3.1 Colorado School of Mines Method
9.3.2 Model Developed by Ernst Buchi
9.3.3 NTNU (Trondheim Norwegian University of Science and Technology) Method
9.4 Tunneling in Difficult Ground with Hard Rock TBMs
9.5 Numerical Examples
9.5.1 A Numerical Example on Using Statistically Derived Equation for TBM Performance Prediction
9.5.1.1 Solution
9.5.2 A Numerical Example on Using Statistically Derived Equation for TBM Performance Prediction for Squeezing Ground
9.5.2.1 Solution
9.5.3 A Numerical Example on Using SE Concept for TBM Performance Prediction
9.5.3.1 Solution
9.5.3.2 Solution for the Same Problem Given in Section 9.5.3 If the TBM Is Worked in Open Mode
9.5.4 Numerical example Cutting Tests to Calculate Daily Advance Rates of TBM
9.5.4.1 Solution
References

10. Soft Ground Tunnel Boring Machines

10.1 General Classification of Soft Ground TBMs
10.2 Compressed Air Shields
10.3 Partly Open Face (Blind) Shields
10.4 Slurry Pressure Balance TBMs and Slurry Conditioning
10.5 Earth Pressure Balance TBMs and Soil/Ground/Muck
Conditioning
10.6 Surface Settlements on Soft Grounds
10.7 Numerical Examples Related to Soft Ground TBMs
10.7.1 A Numerical Example on Estimation of Global Face Stability
10.7.1.1 Solution of Numerical Example 10.7.1
10.7.2 Numerical Example on Estimation of Theoretical Earth Pressures
10.7.2.1 Solution of Numerical Example 10.7.2
10.7.3Numerical Example on Estimation of Excavation Performance
10.7.3.1 Solution of Numerical Example 10.7.3
10.7.4 A Numerical Example on Estimations of TBM Thrust, Cutterhead Torque, and Power
10.7.4.1 Solution of Numerical Example 10.7.4
10.7.5 A Numerical Example on Slurry Conditioning for SPB TBMs
10.7.5.1 Solution of Numerical Example 10.7.5
10.7.6 Numerical Example on the Estimation of the Torque Requirement of a Half-Filled Cutterhead Chamber
10.7.6.1 Solution of Numerical Example 10.7.6
10.7.7 Numerical Example on Soil Conditioning for EPB-TBMs
10.7.7.1 Solution of Numerical Example 10.7.7
10.7.8 A Numerical Example on Surface Settlement Predictions
10.7.8.1 Solution of Numerical Example 10.7.8
References

11. Microtunnel Boring Machines and Jacking Forces

11.1 General.
11.2 Pipe Line Installation Methods
11.3 Some Design Considerations and Planning in Microtunneling
11.4 Performance Predictions for MTBMs
11.5 Numerical Examples on Estimation of Jacking Forces
11.5.1 Jacking Force Estimation by Using the Method of Chapman and Ichioka
11.5.1.1 Solution of Numerical Example 11.5.1
11.5.2Jacking Force Estimation by Using the Method of Bennett and Cording for Sand
11.5.2.1 Solution of Numerical Example 11.5.2
11.5.3Jacking Force Estimation by Using the Method of Bennett and Cording for Clay
11.5.3.1 Solution of Numerical Example 11.5.3
11.5.4 Jacking Force Estimation by Using U.S. Army Corps of Engineers for Dry Formation
11.5.4.1 Solution of Numerical Example 11.5.4
11.5.5 Jacking Force Estimation by Using the Method of Shimada et al.
11.5.5.1 Solution of Numerical Example 11.5.5
11.5.6Jacking Force Estimation by Using Theoretical
Methods
11.5.6.1 Solution of Numerical Example 11.5.6
11.5.7 Jacking Force Estimation by Using the U.S. Army Corps of Engineers (1998) for Wet Formation
11.5.7.1
Solution of Numerical Example 11.5.7
11.5.8 Jacking Force Estimation by Using the Method of Roark and Young
11.5.9 Jacking Force Estimation by Using the Method of O’Reily and Rogers
11.5.9.1 Solution of Numerical Example 11.5.9
11.5.10 Numerical Example on Positioning of IntermediateJacking Stations
11.5.10.1 Solution of Numerical Example 11.5.10
References
12. Shaft and Raise Boring Machines
12.1 Background
12.2 Classification and Working Principles
12.2.1 Raise Boring
12.2.2 Down Reaming
12.2.3 Boxhole
12.2.4 Drilling Blind Shafts with V Moles
12.3 Advantages and Disadvantages of Raise Boring
12.4 Design and Technical Features
12.5 Performance Predictions of Raise Boring Machines
12.6 Numerical Examples
12.6.1 Numerical Example 1: Application of (V)-Type Disk Cutters
12.6.1.1 Solution
12.6.2 Numerical Example 2: Application of (CSS) Disk Cutters
12.6.3 Numerical Example 3: Application of Tungsten Carbide Bit Cutters
12.6.3.1 Solution
12.6.4 Critical Remarks to the Results of the Numerical References
Contents

13. Large-Diameter Drill Rigs

13.1 Large-Diameter Drill Rigs for Pile Construction in Civil Engineering
13.1.1 Background and Technical Features
13.1.2 Working Principles and Operations: A Typical Example in Istanbul
13.1.3 A Numerical Example of the Large-Section Drills Equipped with Conical Cutters
13.1.3.1 Solution
13.2 Large-Diameter Drill Rigs Used in Mining Industry and Possibilities of Using Drilling Specific Energy for TBM Selection
13.2.1 Background
13.2.2 Concept of Drilling Specific Energy and Drilling Tests Carried Out in TKI (Turkish Coal Enterprises)
13.2.3 Concept of Rock-Cutting Specific Energy and the Effect of Rock Compressive Strength on Specific Energy
13.2.4 Numerical Example to Predict TBM Performance from Large-Diameter Drilling Results
13.2.4.1 Solution
References

14. Mechanical Excavation in Coal Mines

14.1 Background
14.2 Shearers
14.3 Ploughs
14.4 Room and Pillar Mining Method and Continuous Miners
14.5 Performance Prediction and Numerical Examples
14.5.1 Numerical Example for Continuous Miners
14.5.1.1 Solution
14.5.2 Numerical Example for Plough
14.5.2.1 Solution
14.5.3 Application of Linear Cutting Test Results to Preliminary Calculation of Power Requirement of a Shearer–Loader
14.5.3.1 Solution
References

15. Chain Saw Machines

15.1 Background
15.2 Technical Features of Chain Saw Machines
15.3 Design of Chain Saw Machines
15.4 Performance Prediction of Chain Saw Machines
15.5 Numerical Examples on the Performance Prediction of Chain Saw Machines
15.5.1 Numerical Example on Deterministic Performance Prediction of Chain Saw Machines
15.5.1.1 Solution of Numerical Example 15.5.1
15.5.2 Numerical Example on Empirical Performance Prediction of Chain Saw Machines
15.5.2.1 Solution of Numerical Example 15.5.2
References
16. Emerging Mechanical Excavation Technologies
16.1Background
16.2 Developments in Cutting Tool Technology
16.2.1 Minidisk Cutters
16.2.2 Dual-Property Tungsten Carbide Technology
16.2.3 Polycrystalline Diamond Composite Tool Technology
16.2.4 Smart*Cut Technology
16.2.5 Undercutting Disk Cutter Technology
16.2.6 Oscillating (Activated) Undercutting Disk CutterTechnology
16.3 Emerging Mobile Machines for Hard Rock Excavation
16.3.1 Robbins Mobile Miner
16.3.2 Aker–Wirth Mobile Tunnel Miner
16.3.3 Hard Rock Roadheaders
16.3.4 Sandvik Reef (Narrow Vein) Miner
16.3.5 Other Developments on Hard Rock Excavation Machines and Systems
16.4 Developments in Blind Shaft Excavation
16.5 Water-Jet-Assisted Mechanical Excavation
References
Index


  • Páginas: 388
  • Tamaño: 17x24
  • Edición:
  • Idioma: Inglés
  • Año: 2013
  • PRECIO   142,00 Euros
SI LO DESEA PUEDE EFECTUAR SU PEDIDO en www.ingenieriayarte.com

GEOLOGIA APLICADA A LA INGENIERIA CIVIL



ingenieria_arte: Geología aplicada a la ingenieria civil  

Geología aplicada a la ingenieria civil 4ª ed.
 Autor: López Marinas,Juan Manuel , Lomoschitz Mora-Figueroa,Alejandro


Esta obra pretende cumplir dos funciones: la de manual universitario para primeros cursos del Grado en Ingeniería Civil y la de libro de consulta para profesionales.
Los estudios del terreno forman parte necesaria de los proyectos de Ingeniería Civil (carreteras y obras ferroviarias, embalses y presas, obras marítimas y costeras, edificaciones, etc.). Estos con frecuencia incluyen apartados sobre la Geología y el aprovechamiento de materiales pétreos, así como de las características geotécnicas de los terrenos donde se emplazará o discurrirá el trazado de la obra en cuestión.
Hoy en día resulta esencial el conocimiento de las formaciones geológicas y de sus propiedades geotécnicas para el adecuado diseño, ejecución y explotación de muchas obras de infraestructura.
No obstante, la Geología requiere de una dedicación especial, pues los terrenos resultan muy variados (rocas, suelos, aguas subterráneas, etc.) y sólo una atenta observación y descripción –por aproximaciones sucesivas– permite una adecuada clasificación de los mismos. La Geología, ciencia de la Tierra, tiene métodos propios: descriptivos, interpretativos y analíticos.
Además, la Geología se pone al servicio de la Geología aplicada y de la Geotecnia en los proyectos de Ingeniería Civil. Son necesarios los parámetros, cuantificar las propiedades, acotar los problemas y darles solución. En definitiva, en el binomio naturaleza-técnica radica la dificultad y también el atractivo de la Geología aplicada.
Este libro reúne, de forma ordenada, los aspectos normativos del terreno, Capítulo1:Llas características de la matriz rocosa, las discontinuidades y el agua en el macizo rocoso. Capítulos 2, 3 y 4: Las diversas rocas (ígneas, sedimentarias y metamórficas), su utilización y comportamiento. Capítulos 5, 6 y 7: La investigación y clasificación de los macizos rocosos (capítulos 8 y 9).

ÍNDICE

PRÓLOGO

CAPÍTULO 1 EL TERRENO EN LA NORMATIVA DE LA INGENIERÍA CIVIL

1.1 INTRODUCCIÓN
1.2 LEY DE CONTRATOS DE LAS ADMINISTRACIONES PÚBLICAS
1.3 NORMATIVA DE OBRAS HIDRÁULICAS. LA INSTRUCCIÓN PARA EL PROYECTO, CONSTRUCCIÓN Y EXPLOTACIÓN DE GRANDES PRESAS. EL REGLAMENTO TÉCNICO SOBRE SEGURIDAD DE PRESAS Y EMBALSES
1.4 NORMATIVA DE COSTAS Y PUERTOS. LEY 22/1988, DE 28 DE JULIO, DE COSTAS (B.O.E. N° 181) Y REGLAMENTO GENERAL DE COSTAS
Y RECOMENDACIONES PARA OBRAS MARÍTIMAS
1.5 NORMAS DE FERROCARRILES
1.6 NORMATIVA DE HORMIGONES
1.7 NORMATIVA DE CARRETERAS
1.8 LA NORMATIVA SOBRE AEROPUERTOS
1.9 LA NORMA SISMORRESISTENTE (NCS-94)
1.10 LAS DIRECTRICES BÁSICAS DE PROTECCIÓN CIVIL
1.11 NORMAS DE EDIFICACIÓN
1.12 LOS CÓDIGOS EUROPEOS
1.13 REFERENCIAS

CAPÍTULO 2 MATRIZ ROCOSA. CARACTERÍSTICAS GEOMECÁNICAS. ALTERACIÓN

2.1 MATRIZ ROCOSA  ROCA, ROCA ALTERADA Y SUELO
2.2 MACIZO ROCOSO, MASA ROCOSA 0 MEDIO ROCOSO
2.3 CLASIFICACIÓN DE LAS ROCAS
2.4 CARACTERÍSTICAS DE LA MATRIZ ROCOSA Y DEL MACIZO
2.4.1 Mineralogía de la roca matriz, textura y estructura
2.4.2 Granulometría
2.4.3 Densidad
2.4.4 Porosidad
2.4.5 Permeabilidad
2.4.6 Hinchamiento
2.4.7 Dureza
2.4.8 Abrasión
2.4.9 Resistencia a compresión
2.4.10 Resistencia a tracción
2.4.11 Resistencia al esfuerzo cortante o cizalla
2.4.12 Velocidad de ondas elasticas
2.5.METEORIZACIÓN
2.6 REFERENCIAS

CAPÍTULO 3 DISCONTINUIDADES DEL MACIZO

3.1 INTRODUCCIÓN
3.2 LA TEORÍA DE LA TECTÓNICA DE PLACAS
3.3 LAS DEFORMACIONES DEL MATERIAL DE LA CORTEZA TERRESTRE
3.3.1.Diaclasas
3.3.2 Fallas
3.3.3 Fallas y terremotos
3.3.4 Pliegues
3.3.5 Domos, cubetas y diapiros
3.3.6.Mantos de corrimiento
3.4 REFERENCIAS

CAPÍTULO 4 EL AGUA EN EL MACIZO

4.1.INTRODUCCIÓN
4.2.EL CICLO DEL AGUA. BALANCE HÍDRICO. ACUÍFEROS
4.3 PERMEABILIDAD. TRANSMISIBILIDAD
4.4 MEDIDA DE LA PERMEABILIDAD
4.5 LA CIRCULACIÓN DEL AGUA EN EL MACIZO
4.6 LA INFLUENCIA DEL AGUA EN EL TERRENO Y LA OBRA
4.6.1 Efectos debidos a la presencia de humedad
4.6.2 Alteración de los materiales del macizo
4.6.3 Efectos adversos por la presencia de flujo
4.6.4 Efectos causados por la existencia de presión hidrostática
4.7 EL TRATAMIENTO DE LAS AGUAS DEL MACIZO
4.8 ACCIÓN INCRUSTANTE Y CORROSIVA DE LAS AGUAS
4.9 REFERENCIAS

CAPÍTULO 5 ROCAS ÍGNEAS. UTILIZACIÓN Y COMPORTAMIENTO

5.1 INTRODUCCIÓN
5.2 ROCAS ÍGNEAS
5.3 COMPOSICIÓN MINERALÓGICA DE LAS ROCAS ÍGNEAS
5.4 TEXTURAS DE LAS ROCAS ÍGNEAS
5.5 ESTRUCTURA DE LAS ROCAS ÍGNEAS PLUTÓNICAS
5.5.1 Masas subyacentes
5.5.2 Cuerpos tabulares
5.5.3 Chimeneas
5.6 MATERIALES Y ESTRUCTURAS VOLCÁNICOS
5.7 CLASIFICACIÓN DE LAS ROCAS ÍGNEAS
5.8 GRANITO Y ROCAS DE LA FAMILIA DEL GRANITO
5.8.1 Composición mineralógica
5.8.2 Alteración de las rocas graníticas
5.8.3 Utilización y comportamiento del granito
Paisaje
Obtención de agua
Edificación
Canteras
Arido para hormigones
Balasto y macadam
Escolleras
Cimentación
Embalses
Excavaciones a cielo abierto
Excavaciones subterráneas
Otras utilizaciones
5.8.4 Utilización y comportamiento de la aplita
5.8.5 Utilización y comportamiento de la pegmatita
5.8.6 Utilización y comportamiento de la sienita, diorita y gabro
5.8.7 Utilización y comportamiento de la diabasa o dolerita
5.8.8 Utilización y comportamiento del pórfido
5.9 UTILIZACIÓN Y COMPORTAMIENTO DE LAS ROCAS VOLCANICAS
5.9.1 Utilización y comportamiento de las cenizas y tobas blandas
5.9.2 Utilización del lapilli y escorias
5.9.3 Utilización y comportamiento de la riolita
5.9.4 Utilización y comportamiento de la traquita y la fonolita
5.9.5 Utilización y comportamiento de la dacita
5.9.6 Utilización y comportamiento de la andesita
5.9.7 Utilización y comportamiento del basalto
5.10 RIESGO VOLCÁNICO
5.11 REFERENCIAS

CAPÍTULO 6 ROCAS SEDIMENTARIAS. UTILIZACIÓN Y COMPORTAMIENTO

6.1 INTRODUCCIÓN
6.2 COMPOSICIÓN MINERALÓGICA DE LAS ROCAS SEDIMENTARIAS
6.3 TEXTURA DE LAS ROCAS SEDIMENTARIAS
6.4 ESTRUCTURA DE LAS ROCAS SEDIMENTARIAS
6.5 CLASIFICACIÓN DE LAS ROCAS SEDIMENTARIAS
6.6 UTILIZACIÓN Y COMPORTAMIENTO DE LAS ROCAS SEDIMENTARIAS
6.6.1 Rocas detríticas
Gravas y arenas
Limos
Arcillas
Conglomerados
Areniscas
Cuarcita (Ortocuarcita)
Arcosa
Molasa (subgrauvaca)
Grauvaca
Limolita
Arcillita
6.6.2 Rocas intermedias
Marga
6.6.3 Rocas no descritas
Rocas carbonatadas
Caliza
Dolomía
Evaporitas
Yeso
Cloruros
Otras rocas sedimentarias
6.7.REFERENCIAS

CAPÍTULO 7 ROCAS METAMÓRFICAS. UTILIZACIÓN Y COMPORTAMIENTO

7.1 METAMORFISMO. CLASES
7.2 GRADOS DE METAMORFISMO
7.3 LOS MINERALES DE LAS ROCAS METAMÓRFICAS
7.4 TEXTURA DE LAS ROCAS METAMÓRFICAS
7.5 ESTRUCTURA DE LAS ROCAS METAMÓRFICAS
7.6 GEOMORFOLOGÍA DE LAS ROCAS METAMÓRFICAS
7.7 CLASIFICACIÓN DE LAS ROCAS METAMÓRFICAS
7.8 UTILIZACIÓN Y COMPORTAMIENTO DE LAS ROCAS METAMÓRFICAS
Rocas de metamorfismo dinámico
Milonitas y cataclastítas
Rocas de metamorfismo de contacto
Corneanas
Pizarras moteadas
Rocas de metamorfismo regional o de contacto
Mármol
Cuarcitas metamórficas (metacuarcitas)
Rocas de metamorfismo regional
Pizarras
Filitas
Esquistos
Gneis
Anfibolitas
Granulitas
Eclogitas
Migmatitas
7.9 REFERENCIAS

CAPITULO 8 INVESTIGACIÓN Y AUSCULTACIÓN DEL MACIZO

8.1.INVESTIGACIÓN DEL MACIZO ROCOSO. INTRODUCCIÓN
8.2 OBJETIVOS DE LA INVESTIGACIÓN DE UN MACIZO
8.3 LOS FACTORES DE LA INVESTIGACIÓN
8.4 INTENSIDAD DE LA INVESTIGACIÓN
8.5 ETAPAS DE LA INVESTIGACIÓN
8.6 LOS MEDIOS DE LA INVESTIGACIÓN
8.6.1 Documentación previa
8.6.2 Levantamiento geológico
8.6.3 Investigaciones Profundas
Investigaciones directas
Calicatas y zanjas
Pozos
Galerías
Sondeos
Sondeos a percusión
Sondeo a rotación
Análisis del testigo obtenido y presentación de resultados
Desviación de un sondeo
Testificaciones o Diagrafías
Diagrafías instantáneas
Diagrafías diferidas
Testificación eléctrica
Diagrafías eléctricas resistivas
La testificación de Polarización espontanea
Diagrafías radioactivas
Rayos gamma
Neutrones
Diagrafías sónicas
Desviación
Calibre
Temperatura
Investigaciones indirectas
Métodos eléctricos
Método sísmico
Método Sísmico de Refracción. Caso de dos capas
Utilización del método sísmico de refracción
Métodos de Cross-Hole y Down-Hole
Método Cross-Hole
Método Down-Hole
Comparación de ambos métodos
Georadar
8.6.4 Medidas de tensiones in situ
Medidas de liberación de tensiones
Medidas en el fondo del sondeo Doorstoper
Medidas con Células transversales
Medidas con Células triaxiales
Método de restablecimiento de tensiones
8.6.5 Medidas de deformabilidad
Ensayo de deformabilidad con gatos de placa flexible
Medida de deformabilidad mediante ensayos de carga con placa rígida
Medida de la deformabilidad en sondeos. Presiómetro y dilatómetro
Medida de deformabilidad con gatos radiales
Medida de deformabilidad en cámara
8.6.6 Medidas de presión transmitida por el terreno
8.6.7 Medidas de desplazamientos del terreno
Medidas de deformación del sostenimiento y revestimiento de una excavación
Métodos que permiten la determinación de tres componentes
Métodos que permiten la determinación bidímensional de las deformaciones
Métodos que permiten la determinación según una dirección: medidas de convergencia
Medidas de los movimientos del macizo
Medidas topográficas
Extensómetros
Medidor de asientos
8.6.8 Ensayo de resistencia al corte
8.6.9 Ensayos de penetración
Penetrómetros estáticos
Penetrómetros dinámicos
Ensayo de penetración estándar (SPT)
8.9 REFERENCIAS

CAPÍTULO 9 CLASIFICACIÓN DE MACIZOS ROCOSOS

9.1 INTRODUCCIÓN
9.2 CLASIFICACIÓN EN BASE AL ÍNDICE R.Q.D. (ROCK QUALITY DESIGN) .
9.3 CLASIFICACIÓN BASADA EN EL ÍNDICE Q
9.4 CLASIFICACIÓN BASADA EN EL ÍNDICE RMR (ROCK MASS RATING)
9.5 ALGUNAS CLASIFICACIONES BASADAS EN LA DE BIENIAWSKI
9.6 CONSIDERACIONES ACERCA DE CLASIFICACIONES DE MACIZOS
9.7 REFERENCIAS

ANEJO 1  CONVERSIÓN DE UNIDADES DE TENSIÓN Y PRESIÓN

ANEJO 2  CARACTERÍSTICAS DE ALGUNAS ROCAS

BIBLIOGRAFÍA

ÍNDICE TEMÁTICO


  • Páginas: 506
  • Edición: 22ª
  • Idioma: Español
  • Año: 2013
  • PRECIO  59,50
SI LO DESEA PUEDE EFECTUAR SU PEDIDO EN www.ingenieriayarte.com

Proyecto de estructuras de hormigón frente a los efectos de las deformaciones impuestas

ingenieria_arte: Proyecto de estructuras de hormigón frente a los efectos de las deformaciones impuestas




Proyecto de estructuras de hormigón frente a los efectos de las deformaciones impuestas




Autor: Asociación Científico-Técnica del Hormigón Estructural Grupo de trabajo 

Presentación La Monografía que se incluye a continuación es el resultado del trabajo sostenido de un grupo que mantuvo cerca de 30 reuniones a lo largo de varios años. El grupo se planteó con el propósito de abordar un problema práctico de gran interés, con unas ideas iniciales relativamente vagas pero que fueron evolucionando con el tiempo gracias a las discusiones, siempre enriquecedoras, del trabajo en grupo. La aportación de distintos puntos de vista y experiencias acabó por dar lugar a una visión de mucha mayor riqueza de la que se habría alcanzado con un trabajo inconexo de personas aisladas. El resultado es una monografía que incluye un planteamiento amplio de los problemas de proyecto y análisis de estructuras integrales, proponiendo métodos de análisis sencíllos aplicables directamente al proyecto y enriquecido con ábacos, ejemplos de aplicación tomados de casos prácticos reales y resultados empíricos obtenidos de estructuras construidas monitorizadas. Es nuestro deseo que este documento contribuya de alguna forma a romper una barrera técnica que ha sido a lo largo de los años una de las trabas más importantes para la eliminación de juntas innecesarias. El futuro, esperamos, estará mucho más poblado de estructuras integrales, proyectadas, ya sobre bases sólidas sin un gasto de tiempo desproporcionado.

ÍNDICE

PRÓLOGO

PRESENTACIÓN
 
1. INTRODUCCIÓN


1.1. Por qué las juntas son indeseables
1.2. ¿Por qué, a pesar de ello, se proyecta con juntas?
1.3. Dinteles y pilares
1.4. Objetivo y contenido
1.5. Bibliografía

2. LAS JUNTAS HOY Y LOS MÉTODOS TRADICIONALES

2.1. Introducción
2.2. Tipos de juntas
2.3. Razones para disponer juntas de dilatación
2.4. Métodos usados en edificación para definir distancias entre juntas de dilatación
2.5. Juntas en otros tipos de estructuras
2.6. Estrategia simplificada de proyecto de estructuras largas
2.7. Bibliografía

3. METODOLOGÍA PARA EFECTUAR UN ANÁLISIS NO LINEAL

3.1. Introducción
3.2. Objetivos del cálculo
3.3. Cargas a considerar
3.4. Modelos de comportamiento de los materiales
3.5. Representación de la estructura
3.6. Secuencia de cálculo -Hipótesis de carga
3.7 Interpretación de resultados y evaluación de ELS y ELU
3.8. Bibliografia

4. MÉTODO DEL PREDIMENSIONAMIENTO DIRECTO DE PILARES EN ELS

4.1. Introducción
4.2. Supuestos
4.3. Reducción del problema al caso de un soporte asilado
4.4. Calculo no lineal
4.5. Análisis a nivel de sección
4.6. Análisis estructural
4.7. Dimensionamiento directo
4.8. Deformaciones diferidas
4.9. Combinación de deformaciones instantáneas y diferidas
4.10. Alargamiento del eje de la barra debido al comportamiento no lineal (beam growth)
4.11. Ejemplo de aplicación -Pórtico simple
4.12. Conclusiones
A4. Ábacos de dimensionamiento

5. EL EFECTO DE LAS DEFORMACIONES IMPUESTAS EN ELU

5.1. Introducción
5.2. Planteamiento del análisis - Reducción del problema al caso de un soporte aislado
5.3. Resultados del estudio
5.4. Conclusión
5.3.Bibliografía
A5. Modelo de Mander para el hormigón confinado

6. EJEMPLOS DE APLICACIÓN DEL MÉTODO DE PREDIMENSIONAMIENTO  DIRECTO DE PILARES  RECOMENDACIONES
6.1. Ejemplos prácticos
6.2. Recomendaciones para el proyecto
6.3. Bibliografía

7. MEDIDAS EN ESTRUCTURAS REALES
 
7.1. Mediciones y monitorización de estructuras reales
7.2. Mediciones NAT Barajas
7.3. Mediciones en el aparcamiento de la calle Urzaiz (Vigo)
7.4. Bibliografía


  • Páginas: 146
  • Tamaño: 21x30
  • Edición: Primera
  • Idioma: Español
  • Año: 2013
  • PRECIO  40,00 Euros
SI LO DESEA PUEDE EFECTUAR SU PEDIDO EN www.ingenieriayarte.com

Advanced Geotechnical Engineering: Soil-Structure Interaction using Computer and Material Models

ingenieria_arte: Advanced Geotechnical Engineering: Soil-Structure Interaction using Computer and Material Models  

Advanced Geotechnical Engineering: Soil-Structure Interaction using Computer and Material Models
Autor: Desai, Chandrakant S. , Zaman,Musharraf 

 eatures
•Examines the limitations of conventional solutions used in solving geotechnical problems pertaining to beams, piles, footings, and flow and seepage, and earthquake analysis
•Presents the developments in numerical modeling techniques and tools such as finite element and finite difference methods, and their applications for solving geotechnical problems in an easily understood manner
•Includes conventional and advanced developments in constitutive modeling for geologic materials, interfaces and joints
•Explains the influence of interactions between structures and soils/rocks, effects of nonlinearity, and material models on the behavior of structures
•Details the software used in solving examples throughout the book
•Offers a wide range of challenging problems that benefits a broad range of readers (upper-level undergraduate and graduate students, researchers, faculty, and practicing engineers)
Summary
Soil-structure interaction is an area of major importance in geotechnical engineering and geomechanics Advanced Geotechnical Engineering: Soil-Structure Interaction using Computer and Material Models covers computer and analytical methods for a number of geotechnical problems. It introduces the main factors important to the application of computer methods and constitutive models with emphasis on the behavior of soils, rocks, interfaces, and joints, vital for reliable and accurate solutions.

This book presents finite element (FE), finite difference (FD), and analytical methods and their applications by using computers, in conjunction with the use of appropriate constitutive models; they can provide realistic solutions for soil–structure problems. A part of this book is devoted to solving practical problems using hand calculations in addition to the use of computer methods. The book also introduces commercial computer codes as well as computer codes developed by the authors.
•Uses simplified constitutive models such as linear and nonlinear elastic for resistance-displacement response in 1-D problems
•Uses advanced constitutive models such as elasticplastic, continued yield plasticity and DSC for microstructural changes leading to microcracking, failure and liquefaction
•Delves into the FE and FD methods for problems that are idealized as two-dimensional (2-D) and three-dimensional (3-D)
•Covers the application for 3-D FE methods and an approximate procedure called multicomponent methods
•Includes the application to a number of problems such as dams , slopes, piles, retaining (reinforced earth) structures, tunnels, pavements, seepage, consolidation, involving field measurements, shake table, and centrifuge tests
•Discusses the effect of interface response on the behavior of geotechnical systems and liquefaction (considered as a microstructural instability)

This text is useful to practitioners, students, teachers, and researchers who have backgrounds in geotechnical, structural engineering, and basic mechanics courses.

Table of Contents

Introduction

Importance of Interaction
Importance of Material Behavior
Ranges of Applicability of Models
Computer Methods
Fluid Flow
Scope and Contents
References

Beam-Columns, Piles, and Walls: One-Dimensional Simulation

Introduction
Beams with Spring Soil Model
Laterally Loaded (One-Dimensional) Pile
Numerical Solutions
Finite Element Method: One-Dimensional Simulation
Soil Behavior: Resistance–Displacement ( py –v or p–y) Representation
One-Dimensional Simulation of Retaining Structures
Axially Loaded Piles
Torsional Load on Piles
Examples
Problems
References

Two- and Three-Dimensional Finite Element Static Formulations and Two-Dimensional Applications

Introduction
Finite Element Formulations
Nonlinear Behavior
Sequential Construction
Examples
Problems
References

Three-Dimensional Applications

Introduction
Multicomponent Procedure
Examples
Problems
References

Flow through Porous Media: Seepage

Introduction
Governing Differential Equation
Numerical Methods
Finite Element Method
Invariant Mesh or Fixed Domain Methods
Applications: Invariant Mesh Using RFP
Problems
Appendix A
References
Flow through Porous Deformable Media: One-Dimensional Consolidation
Introduction
One-Dimensional Consolidation
Nonlinear Stress–Strain Behavior
Numerical Methods
Examples
References

Coupled Flow through Porous Media: Dynamics and Consolidation

Introduction
Governing Differential Equations
Dynamic Equations of Equilibrium
Finite Element Formulation
Special Cases: Consolidation and Dynamics-Dry Problem
Applications
References

Appendix 1: Constitutive Models, Parameters and Determination s

Appendix 2: Computer Software and Codes


  • Páginas: 638
  • Tamaño: 17x24
  • Edición:
  • Idioma: Inglés
  • Año: 2013
  • PRECIO 120,00 Euros
SI LO DESEA PUEDE SOLICITAR SU PEDIDO EN www.ingenieriayarte.com 

CONCRETE AND STEEL CONSTRUCTION QUALITY CONTROL



ingenieria_arte: Concrete and Steel Construction.Quality Control and Assurance  

Concrete and Steel Construction.Quality Control and Assurance
Autor: El-Reedy,Mohamed A.


Starting with the receipt of materials and continuing all the way through to the final completion of the construction phase, Concrete and Steel Construction: Quality Control and Assurance examines all the quality control and assurance methods involving reinforced concrete and steel structures. This book explores the proper ways to achieve high-quality construction projects, and also provides a strong theoretical and practical background. It introduces information on quality techniques and quality management, and covers the principles of quality control.

The book presents all of the quality control and assurance protocols and non-destructive test methods necessary for concrete and steel construction projects, including steel materials, welding and mixing, and testing. It covers welding terminology and procedures, and discusses welding standards and procedures during the fabrication process, as well as the welding codes. It also considers the total quality management system based on ISO 9001, and utilizes numerous international and industry building standards and codes. Covers AISC, ACI, BS, and AWS codes

    Examines methods for concrete quality control in hot and cold weather applications, as well as material properties
    Illustrates methods for non-destructive testing of concrete and for steel welding—radiographic, ultrasonic, and penetration and other methods.
    Addresses ISO 9001 standards—designed to provide organizations better quality control systems
    Includes a checklist to be considered as a QA template

Developed as a handbook for industry professionals, this book also serves as a resource for anyone who is working in construction and on non-destructive inspection testing for concrete and steel structures.
Mohamed A. El-Reedy received his bachelor's degree from Cairo University in 1990, his master's degree in 1995, and his Ph.D from Cairo University in 2000. His main area of research is reliability of concrete and steel structures. Dr. El-Reedy has written numerous publications and presented many papers at local and international conferences. He has published many research papers in international technical journals and has authored four books about total quality management, quality management and quality assurance, economic management for engineering projects, and repair and protection of reinforced concrete structures.

Contents

Introduction

Effective Total Quality Management System

Introduction
Quality System
ISO 9000
Quality Management Requirements
Project Quality Control in Various Stages
Operational Phase of the Project
Total Building Commissioning System

Concrete Materials and Tests

Introduction
Concrete Materials Test
Admixtures
References
Concrete Materials Tests
Introduction
Essential Statistics Information
Basics of Concrete Mix Design
Egyptian Code
British Standard (BS)
American Specifications (ACI)
Fresh Concrete Tests
Define Concrete Density
Define Settlement for Fresh Concrete
Determining Compaction Factor for Fresh Concrete
High Performance Concrete Mix
Pumped Concrete Mix
References

Construction Quality Control

Introduction
Execute the Wooden Form
Allowable Tolerance in the Dimensions
Detailing, Fabrication and Installation of The Steel Bar
Concrete Cover and Its Specifications
Concrete Pouring
Compaction Procedure
Execute Curing
Hot Weather Concrete
High Strength Concrete Quality
Self-Compacted Concrete (SCC)
Lightweight Aggregate Concrete
Cold Weather
References

Non-Destructive Test for Concrete

Introduction
Core Test
Rebound Hammer
Ultrasonic Pulse Velocity
Load Test for Concrete Members
Pullout Test
Define Chloride Content in Harden Concrete
Concrete Cover Measurements
Comparison between Different Tests

Steel Structure Quality Control

Introduction
Steel Properties
Design Situations
Connection
Welding Types
Stud Weld
Quality Control on Site
Inspection and Testing
References

Non Destructive Testing For Steel Structure

Introduction
Visual Test
Radiographic Test
Ultrasonic Test
Penetration Test
Magnetic Particle Test
References


  • Páginas: 348
  • Tamaño: 17x24
  • Edición:
  • Idioma: Inglés
  • Año: 2013
  • PRECIO  136,00 Euros
SI LO DESEA PUEDE EFECTUAR SU PEDIDO EN www.ingenieriayarte.com

BASICS OF RETAINING WALL DESIGN


ingenieria_arte: Basics of Retaining Wall Design

Basics of Retaining Wall Design
Autor: Brooks,Hugh,P Nielsen,John

Design guide for earth retaining structures. Updated and expanded new 10th edtition covers nearly every type of earth retaining structure: cantilevered, counterfort, restrained (basement walls), gravity, segmental, sheet pile, sodier pile, and others. Current building code requirements are covered including IBC '12, MSJC '11, ACI 318-11, ASCE 7-10, CBC '13, and AASHTO.
Topics include types of retaining structures, basic soil mechanics, design of concrete and masonry walls, lateral earth pressures, seismic design, surcharges, pile and pier foundations, and swimming pool walls. Fourteen varied design examples. Comprehensive Appendix. Glossary of terminology


  • Páginas: 260
  • Tamaño: 21x30
  • Edición: 10ª
  • Idioma: Inglés
  • Año: 2013
  • PRECIO  52,00 EUROS
 SI LO DESEA PUEDE EFECTUAR SU PEDIDO EN www.ingenieriayarte.com

DESIGN OF HIGHWAY BRIDGES AN LRFD APPROACH


ingenieria_arte: Design of Highway Bridges: An LRFD Approach

Design of Highway Bridges: An LRFD Approach
Autor: Barker, Richard M., Puckett , Jay A. 


Up-to-date coverage of bridge design and analysis— revised to reflect the fifth edition of the AASHTO LRFD specifications
Design of Highway Bridges, Third Edition offers detailed coverage of engineering basics for the design of short- and medium-span bridges. Revised to conform with the latest fifth edition of the American Association of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications, it is an excellent engineering resource for both professionals and students. This updated edition has been reorganized throughout, spreading the material into twenty shorter, more focused chapters that make information even easier to find and navigate. It also features:
•Expanded coverage of computer modeling, calibration of service limit states, rigid method system analysis, and concrete shear
•Information on key bridge types, selection principles, and aesthetic issues
•Dozens of worked problems that allow techniques to be applied to real-world problems and design specifications
•A new color insert of bridge photographs, including examples of historical and aesthetic significance
•New coverage of the "green" aspects of recycled steel
•Selected references for further studyFrom gaining a quick familiarity with the AASHTO LRFD specifications to seeking broader guidance on highway bridge design—Design of Highway Bridges is the one-stop, ready reference that puts information at your fingertips, while also serving as an excellent study guide and reference for the U.S. Professional Engineering Examination.
 
Table of Contents

Preface
Preface to the Second Edition
Preface to the First Edition

PART I GENERAL ASPECTS OF BRIDGE DESIGN

CHAPTER 1 INTRODUCTION TO BRIDGE ENGINEERING
 
1.1 A Bridge Is the Key Element in a Transportation System
1.2 Bridge Engineering in the United States
1.2.1 Stone Arch Bridges
1.2.2 Wooden Bridges
1.2.3 Metal Truss Bridges
1.2.4 Suspension Bridges
1.2.5 Metal Arch Bridges
1.2.6 Reinforced Concrete Bridges
1.2.7 Girder Bridges
1.2.8 Closing Remarks
1.3 Bridge Engineer—Planner, Architect, Designer, Constructor and Facility Manager
References
Problems

CHAPTER 2 SPECIFICATIONS AND BRIDGE FAILURES
 
2.1 Bridge Specifications
2.2 Implication of Bridge Failures on Practice
2.2.1 Silver Bridge, Point Pleasant, West Virginia, December 15, 1967
2.2.2 I-5 and I-210 Interchange, San Fernando, California, February 9, 1971
2.2.3 Sunshine Skyway, Tampa Bay, Florida, May 9, 1980
2.2.4 Mianus River Bridge, Greenwich, Connecticut, June 28, 1983
2.2.5 Schoharie Creek Bridge, Amsterdam, New York, April 5, 1987
2.2.6 Cypress Viaduct, Loma Prieta Earthquake, October 17, 1989
2.2.7 I-35W Bridge, Minneapolis,Minnesota, August 1, 2007
2.2.8 Failures During Construction
References
Problems

CHAPTER 3 BRIDGE AESTHETICS
 
3.1 Introduction
3.2 Nature of the Structural Design Process
3.2.1 Description and Justification
3.2.2 Public and Personal Knowledge
3.2.3 Regulation
3.2.4 Design Process
3.3 Aesthetics in Bridge Design
3.3.1 Definition of Aesthetics
3.3.2 Qualities of Aesthetic Design
3.3.3 Practical Guidelines for Medium- and Short-Span Bridges
3.3.4 Computer Modeling
3.3.5 Web References
3.3.6 Closing Remarks on Aesthetics
References
Problems

CHAPTER 4 BRIDGE TYPES AND SELECTION
 
4.1 Main Structure below the Deck Line
4.2 Main Structure above the Deck Line
4.3 Main Structure Coincides with the Deck Line
4.4 Closing Remarks on Bridge Types
4.5 Selection of Bridge Type
4.5.1 Factors to Be Considered
4.5.2 Bridge Types Used for Different Span Lengths
4.5.3 Closing Remarks
References
Problems

CHAPTER 5 DESIGN LIMIT STATES
 
5.1 Introduction
5.2 Development of Design Procedures
5.2.1 Allowable Stress Design
5.2.2 Variability of Loads
5.2.3 Shortcomings of Allowable Stress Design
5.2.4 Load and Resistance Factor Design
5.3 Design Limit States
5.3.1 General
5.3.2 Service Limit State
5.3.3 Fatigue and Fracture Limit State
5.3.4 Strength Limit State
5.3.5 Extreme Event Limit State
5.4 Closing Remarks
References
Problems

CHAPTER 6 PRINCIPLES OF PROBABILISTIC DESIGN

6.1 Introduction
6.1.1 Frequency Distribution and Mean Value
6.1.2 Standard Deviation
6.1.3 Probability Density Functions
6.1.4 Bias Factor
6.1.5 Coefficient of Variation
6.1.6 Probability of Failure
6.1.7 Safety Index ß
6.2 Calibration of LRFD Code
6.2.1 Overview of the Calibration Process
6.2.2 Calibration Using Reliability Theory
6.2.3 Calibration of Fitting with ASD
6.3 Closing Remarks
References
Problems 94

CHAPTER 7 GEOMETRIC DESIGN CONSIDERATIONS
 
7.1 Introduction to Geometric Roadway Considerations
7.2 Roadway Widths
7.3 Vertical Clearances
7.4 Interchanges
References
Problem

PART II LOADS AND ANALYSIS

CHAPTER 8 LOADS
 
8.1 Introduction
8.2 Gravity Loads
8.2.1 Permanent Loads
8.2.2 Transient Loads
8.3 Lateral Loads
8.3.1 Fluid Forces
8.3.2 Seismic Loads
8.3.3 Ice Forces
8.4 Forces Due to Deformations
8.4.1 Temperature
8.4.2 Creep and Shrinkage
8.4.3 Settlement
8.5 Collision Loads
8.5.1 Vessel Collision
8.5.2 Rail Collision
8.5.3 Vehicle Collision
8.6 Blast Loading
8.7 Summary
References
Problems

CHAPTER 9 INFLUENCE FUNCTIONS AND GIRDER-LINE ANALYSIS

9.1 Introduction
9.2 Definition
9.3 Statically Determinate Beams
9.3.1 Concentrated Loads
9.3.2 Uniform Loads
9.4 Muller–Breslau Principle
9.4.1 Betti’s Theorem
9.4.2 Theory of Muller–Breslau Principle
9.4.3 Qualitative Influence Functions
9.5 Statically Indeterminate Beams
9.5.1 Integration of Influence Functions
9.5.2 Relationship between Influence Functions
9.5.3 Muller–Breslau Principle for End Moments
9.5.4 Automation by Matrix Structural Analysis
9.6 Normalized Influence Functions
9.7 AASHTO Vehicle Loads
9.8 Influence Surfaces
9.9 Summary
References
Problems

CHAPTER 10 SYSTEM ANALYSIS—INTRODUCTION
 
10.1 Introduction
10.2 Safety of Methods
10.2.1 Equilibriumfor Safe Design
10.2.2 Stress Reversal and Residual Stress
10.2.3 Repetitive Overloads
10.2.4 Fatigue and Serviceability
10.3 Summary
References
Problem

CHAPTER 11 SYSTEM ANALYSIS—GRAVITY LOADS
 
11.1 Slab–Girder Bridges
11.2 Slab Bridges
11.3 Slabs in Slab–Girder Bridges
11.4 Box-Girder Bridges
11.5 Closing Remarks
References
Problems

CHAPTER 12 SYSTEM ANALYSIS—LATERAL, TEMPERATURE, SHRINKAGE AND PRESTRESS LOADS
 
12.1 Lateral Load Analysis
12.1.1 Wind Loads
12.1.2 Seismic Load Analysis
12.2 Temperature, Shrinkage, and Prestress
12.2.1 General
12.2.2 Prestressing
12.2.3 Temperature Effects
12.2.4 Shrinkage and Creep
12.3 Closing Remarks
References

PART III CONCRETE BRIDGES

CHAPTER 13 REINFORCED CONCRETE MATERIAL RESPONSE AND PROPERTIES

13.1 Introduction
13.2 Reinforced and Prestressed Concrete Material Response
13.3 Constituents of Fresh Concrete
13.4 Properties of Hardened Concrete
13.4.1 Short-Term Properties of Concrete
13.4.2 Long-Term Properties of Concrete
13.5 Properties of Steel Reinforcement
13.5.1 Nonprestressed Steel Reinforcement
13.5.2 Prestressing Steel
References
Problems
CHAPTER 14 BEHAVIOR OF REINFORCED CONCRETE MEMBERS
14.1 Limit States
14.1.1 Service Limit State
14.1.2 Fatigue Limit State
14.1.3 Strength Limit State
14.1.4 Extreme Event Limit State
14.2 Flexural Strength of Reinforced Concrete Members
14.2.1 Depth to Neutral Axis for Beams with Bonded Tendons
14.2.2 Depth to Neutral Axis for Beams with Unbonded Tendons
14.2.3 Nominal Flexural Strength
14.2.4 Ductility,Maximum Tensile Reinforcement,and Resistance Factor Adjustment
14.2.5 Minimum Tensile Reinforcement
14.2.6 Loss of Prestress
14.3 Shear Strength of Reinforced Concrete Members
14.3.1 Variable-Angle Truss Model
14.3.2 Modified Compression Field Theory
14.3.3 Shear Design Using Modified Compression Field Theory
14.4 Closing Remarks
References
Problems

CHAPTER 15 CONCRETE BARRIER STRENGTH AND DECK DESIGN
 
15.1 Concrete Barrier Strength
15.1.1 Strength of Uniform Thickness Barrier Wall
15.1.2 Strength of Variable Thickness Barrier Wall
15.1.3 Crash Testing of Barriers
15.2 Concrete Deck Design
References
Problems

CHAPTER 16 CONCRETE DESIGN EXAMPLES
 
16.1 Solid Slab Bridge Design
16.2 T-Beam Bridge Design
16.3 Prestressed Girder Bridge
References

PART IV STEEL BRIDGES

CHAPTER 17 STEEL BRIDGES

17.1 Introduction
17.2 Material Properties
17.2.1 Steelmaking Process: Traditional
17.2.2 Steelmaking Process: Mini Mills
17.2.3 Steelmaking Process: Environmental Considerations
17.2.4 Production of Finished Products
17.2.5 Residual Stresses
17.2.6 Heat Treatments
17.2.7 Classification of Structural Steels
17.2.8 Effects of Repeated Stress (Fatigue)
17.2.9 Brittle Fracture Considerations
17.3 Summary
References
Problem

CHAPTER 18 LIMIT STATES AND GENERAL REQUIREMENTS
 
18.1 Limit States
18.1.1 Service Limit State
18.1.2 Fatigue and Fracture Limit State
18.1.3 Strength Limit States
18.1.4 Extreme Event Limit State
18.2 General Design Requirements
18.2.1 Effective Length of Span
18.2.2 Dead-Load Camber
18.2.3 Minimum Thickness of Steel
18.2.4 Diaphragms and Cross Frames
18.2.5 Lateral Bracing
References
Problems

CHAPTER 19 STEEL COMPONENT RESISTANCE
 
19.1 Tensile Members
19.1.1 Types of Connections
19.1.2 Tensile Resistance—Specifications
19.1.3 Strength of Connections for Tension Members
19.2 Compression Members
19.2.1 Column Stability—Behavior
19.2.2 Inelastic Buckling—Behavior
19.2.3 Compressive Resistance—Specifications
19.2.4 Connections for Compression Members
19.3 I-Sections in Flexure
19.3.1 General
19.3.2 Yield Moment and Plastic Moment
19.3.3 Stability Related to Flexural Resistance
19.3.4 Limit States
19.3.5 Summary of I-Sections in Flexure
19.3.6 Closing Remarks on I-Sections in Flexure
19.4 Shear Resistance of I-Sections
19.4.1 Beam Action Shear Resistance
19.4.2 Tension Field Action Shear Resistance
19.4.3 Combined Shear Resistance
19.4.4 Shear Resistance of UnstiffenedWebs
19.5 Shear Connectors
19.5.1 Fatigue Limit State for Stud Connectors
19.5.2 Strength Limit State for Stud Connectors
19.6 Stiffeners
19.6.1 Transverse Intermediate Stiffeners
19.6.2 Bearing Stiffeners
References
Problems

CHAPTER 20 STEEL DESIGN EXAMPLES
 
20.1 Noncomposite Rolled Steel Beam Bridge
20.2 Composite Rolled Steel Beam Bridge
20.3 Multiple-Span Composite Steel Plate Girder Beam Bridge
References

APPENDIX A INFLUENCE FUNCTIONS FOR DECK ANALYSIS
APPENDIX B TRANSVERSE DECK MOMENTS PER AASHTO APPENDIX A4
APPENDIX C METAL REINFORCEMENT INFORMATION
APPENDIX D REFINED ESTIMATE OF TIME-DEPENDENT LOSSES
References
APPENDIX E NCHRP 12-33 PROJECT TEAM
Task Group
APPENDIX F LIVE-LOAD DISTRIBUTION—RIGIDMETHOD
 
INDEX

  • Páginas: 544
  • Tamaño: 17x24
  • Edición:
  • Idioma: Inglés
  • Año: 2013
  • PRECIO 152,00 Euros
SI LO DESEA PUEDE EFECTUAR SU PEDIDO EN www.ingenieriayarte.com
 

ESTRUCTURAS DE MADERA BASES DE CALCULO


ingenieria_arte: Estructuras de Madera. Bases de Cálculo

Estructuras de Madera. Bases de Cálculo
Autor: Argüelles,Ramón , Arriaga, F


Desde la publicación del libro Estructuras de madera - Diseño y cálculo en el año 1996 y en segunda edición de 2000, que es precedente de la actual obra, se han producido importantes desarrollos en el ámbito europeo de la normativa de cálculo de estructuras de madera y en toda la normativa de apoyo de la determinación de las propiedades mecánicas de la madera y de la clasificación estructural. La última edición de aquella ya incluía alguno de los cambios que se estaban consolidando en los borradores de los Eurocódigos.
Además en España la normativa de cálculo de estructuras depende de la Administración. En el año 2006 se publicó el Código Técnico de la Edificación (CTE) que incluía entre varios aspectos de la edificación el relativo a la seguridad estructural. Todo este proceso de evolución ha venido acompañado de un desarrollo e implantación de la construcción con madera en España, como era de esperar. Este material tiene un futuro inevitablemente optimista, a pesar de las actuales circunstancias, por sus ventajas técnicas y  de repercusión medioambiental.
La presente publicación recoge principalmente, las bases de cálculo y permite la comprobación o proyecto de las piezas estructurales. Además, se han incluido capítulos que recogen los diversos productos de uso estructural que se han establecido de una manera decisiva en la construcción con madera, o los capítulos dedicados a las estructuras mixtas. Lógicamente, también se han unificado todas las unidades al Sistema Internacional, al que poco a poco los proyectistas de estructuras se van habituando.
Quedan otros temas por tratar, como las uniones, la organización constructiva, la patología y el cálculo en situación de incendio, que serán objeto de obras posteriores. Además, se plantea otro volumen dedicado al proyecto de estructuras y estará constituido por una serie de ejemplos de cálculo procurando representar los casos más frecuentes en la construcción con madera.
Este libro se dirige al estudiante y al profesional interesado en el proyecto y cálculo de estructuras de madera. El objetivo de la publicación es enseñar cómo se calcula, pero también exponer el soporte teórico que ayuda a entender de una manera más operativa el proceso del proyecto. Para ello el libro incluye numerosos ejemplos de aplicación  y una serie de anexos que permiten profundizar en algunos aspectos específicos

ÍNDICE

CAPITULO 1: INTRODUCCIÓN

1.1 GENERALIDADES .
1.2 ANATOMÍA DE LA MADERA
1.3 TENSIONES DE CRECIMIENTO
1.4 ANISOTROPÍA
1.5 ASPECTOS MEDIOAMBIENTALES DE LA MADERA

CAPITULO 2: PROPIEDADES FÍSICAS Y MECÁNICAS

2.1 PROPIEDADES FÍSICAS.
2.2 PROPIEDADES MECÁNICAS
2.2.1 Introducción
2.2.2 Propiedades mecánicas de la madera
2.2.3 Ensayos para la determinación de las propiedades mecánicas
2.2.4 Factores que influyen en las propiedades mecánicas
2.2.4.1 Contenido de humedad
2.2.4.2 Duración de la carga
2.2.4.3 Calidad de la madera.
2.2.4.4 Temperatura
2.2.5 Efecto del tamaño de la pieza en la resistencia.
2.3 VALORES CARACTERÌSTICOS DEL MATERIAL
2.3.1 Introducción
2.3.2 Valores característicos.

CAPÍTULO 3: PRODUCTOS DE MADERA CON USO EN ESTRUCTURAS

3.1 INTRODUCCIÓN
3.2 MADERA EN ROLLO
3.2.1 Introducción
3.2.2 Materiales
3.2.3 Dimensiones
3.2.4 Clasificación visual
3.2.5 Clases resistentes.
3.3 MADERA ASERRADA
3.4 MADERA EMPALMADA
3.5 MADERA ASERRADA ENCOLADA
3.6 MADERA LAMINADA ENCOLADA.
3.7 MADERA MICROLAMINADA.
3.8 MADERA RECONSTITUIDA
3.9 TABLEROS DERIVADOS DE LA MADERA
3.10 PANELES CONTRALAMINADOS DE MADERA

CAPITULO 4: BASES DE CÁLCULO

4.1 INTRODUCCION
4.1.1 Normativa
4.1.2 Vida útil.
4.1.3 Durabilidad
4.1.4 Estados límite
4.2 PROPIEDADES DEL MATERIAL
4.2.1 Factores que influyen en las propiedades.
4.2.1.1 Contenido de humedad de la madera. Clases de servicio
4.2.1.2 Duración de la carga. Clases de duración de la carga
4.2.1.3 Calidad de la madera. Clasificación
4.2.2 Aplicación de los valores característicos del 5º percentil y valores medios
4.2.3 Valores de cálculo.
4.3 ACCIONES
4.3.1 Clasificación de las acciones
4.3.2 Valores característicos de las acciones
4.3.3. Valores representativos de las acciones
4.3.4 Valores de cálculo de las acciones
4.4 SITUACIONES DE CÁLCULO
4.4.1 Estados límite últimos
4.4.2 Estados límite de servicio
4.5 ANÁLISIS ESTRUCTURAL
4.5.2 Análisis de piezas
4.5.3. Tipos estructurales

CAPITULO 5: DEFORMACIONES Y VIBRACIONES

5.1 CALCULO DE LA DEFORMACION
5.1.1 Deformación inicial o instantánea
5.1.2 Deformación diferida
5.1.2.1 Introducción
5.1.2.2 Factor de fluencia
5.1.3 Influencia de otros factores
5.1.3.1 Uniones
5.1.3.2 Condiciones ambientales
5.1.4 Cálculo de la deformación diferida en piezas con materiales con diferentes propiedades dependientes del tiempo
5.2 LIMITACION DE LA DEFORMACION
5.2.1 Introducción.
5.2.2 Limitaciones
5.3 VIBRACIONES
5.3.1 Introducción.
5.3.2 Limitación de las vibraciones
5.3.2.1 Vibraciones provocadas por maquinaria.
5.3.2.2 Forjados con uso residencial
5.3.2.4 Puentes peatonales

CAPITULO 6: COMPROBACION DE SECCIONES

6.1 GENERALIDADES Y NOTACION.
6.2 COMPROBACION DE TENSIONES NORMALES PARAL. A LA FIBRA
6.2.1 Tracción paralela a la fibra
6.2.2 Compresión paralela a la fibra
6.2.3 Flexión
6.2.3.1 Flexión simple
6.2.3.2 Flexión esviada
6.2.4 Solicitaciones combinadas
6.2.4.1 Flexotracción.
6.2.4.2 Flexocompresión
6.3 COMPROBACION DE LAS TENSIONES TANGENCIALES.
6.3.1 Cortante
6.3.1.1 Generalidades
6.3.1.2 Comprobación
6.3.1.3 Vigas con entalladuras en el apoyo
6.3.2 Torsión
6.3.2.1 Torsión pura
6.3.2.2 Torsión y cortante combinados.
6.4 COMPROBACION DE LAS TENSIONES PERPEND. A LA FIBRA
6.4.1 Tracción perpendicular a la fibra
6.4.2 Compresión inclinada respecto a la fibra
6.4.2.1 Compresión perpendicular
6.4.2.2 Compresión oblicua.
6.5 PIEZAS CON ENTALLADURAS
6.6 SISTEMAS DE CARGA COMPARTIDA

CAPITULO 7: INESTABILIDAD EN PIEZAS DE MADERA

7.1 COLUMNAS
7.1.1 Fundamentos
7.1.2 Determinación del coeficiente de inestabilidad kc
7.1.3 Longitudes de pandeo
7.1.4 Comprobación de secciones en flexocompresión
7.2 VIGAS
7.2.1 Fundamentos del vuelco lateral
7.2.2 Vigas de sección rectangular
7.2.3 Comprobación de secciones.
7.2.4 Disposiciones constructivas

CAPITULO 8: COMPROBACIONES SINGULARES EN PIEZAS DE MADERA LAMINADA DE SECCIÓN VARIABLE O DE DIRECTRIZ CURVA

8.1 INTRODUCCION.
8.2 CANTO VARIABLE Y DESVIO DE LA FIBRA
8.2.1 Estado de tensiones
8.2.2 Comprobación
8.3 PIEZAS CURVAS
8.3.1 Curvado de láminas
8.3.2 Tensiones normales
8.3.3 Tensiones perpendiculares a la fibra
8.4 ZONAS DE VERTICE
8.4.1 Introducción
8.4.2 Comprobación de tensiones normales
8.4.3 Comprobación de tensiones perpendiculares a la fibra

CAPÍTULO 9: VIGAS COMPUESTAS

9.1 INTRODUCCIÓN.
9.2 CONSIDERACIONES GENERALES PARA EL ANÁLISIS DE LAS TENSIONESY DEFORMACIONES EN VIGAS COMPUESTAS CON UNIONES ENCOLADAS
9.3 COMPROBACIÓN DE TENSIONES EN VIGAS CON ALMA ENCOLADA.
9.4 COMPROBACIÓN DE TENSIONES EN VIGAS CON ALAS DELGADAS ENCOLADAS.
9.5 VIGAS CON UNIONES MECÁNICAS
9.5.1 Introducción
9.5.2 Consideraciones generales
9.5.3 Método simplificado para el cálculo de vigas con uniones mecánicas

CAPÍTULO 10: COLUMNAS COMPUESTAS

10.1 INTRODUCCIÓN
10.2 CONSIDERACIONES GENERALES DEL CÁLCULO
10.3 COLUMNAS COMPUESTAS CON UNIONES MECÁNICAS
10.4 COLUMNAS COMPUESTAS CON TACOS SEPARADORES O CON PRESILLAS
10.4.1 Introducción e hipótesis
10.4.2 Capacidad de carga axial
10.4.3 Comprobación de los medios de unión, tacos y presillas
10.5 COLUMNAS DE CELOSÍA CON UNIONES ENCOLADAS O CLAVADAS
10.5.1 Introducción e hipótesis
10.5.2 Capacidad de carga
10.5.3 Esfuerzos cortantes
CAPITULO 11: PREDIMENSIONADO
11.1 INTRODUCCION
11.2 ESTRUCTURAS DE MADERA LAMINADA ENCOLADA
11.2.1 Consideraciones sobre el espesor de lámina
11.2.2 Predimensionado de la estructura principal
11.2.3 Estructura secundaria. Correas
11.2.4 Estimación del peso propio
11.2.5 Aspectos más característicos de la comprobación de algunos sistemas estructurales.
11.3 ESTRUCTURAS DE MADERA ASERRADA.
11.3.1 Forjados
11.3.2 Cerchas ligeras.
11.3.3 Cerchas de madera maciza con grandes escuadrías
11.3.4 Cerchas con escuadrías medianas

ANEXOS

A. Elasticidad en los materiales ortótropos
B. Metodología de ensayo para la determinación de las propiedades mecánicas
C. Determinación de las propiedades mecánicas a partir de probetas pequeñas y libres de defectos
D. Efecto de la duración de la carga en la resistencia
E. Efecto de la edad de la estructura en la capacidad resistente
F. Clasificación de la madera
G. Valores característicos de las propiedades de los tableros.
H. Efecto de la variación del contenido de humedad en las deformaciones y tensiones de las piezas de madera
I. Fundamentos del factor de pandeo en columnas, kc
J. Fundamentos teóricos sobre el pandeo globalde la estructura y longitudes eficaces de sus barras

  • Páginas: 531
  • Tamaño: 17x24
  • Edición:
  • Idioma: Español
  • Año: 2013
  • PRECIO  52,00 EUROS
SI LO DESEA PUEDE SOLICITARLO A TRAVES DE www.ingenieriayarte.com

SEISMIC DESIGN OF STEEL STRUCTURES


ingenieria_arte: Seismic Design of Steel Structures  

Seismic Design of Steel Structures
Autor: Gioncu,Victor , Mazzolani,Federico


Providing real world applications for different structural types and seismic characteristics, Seismic Design of Steel Structures combines knowledge of seismic behavior of steel structures with the principles of earthquake engineering. This book focuses on seismic design, and concentrates specifically on seismic-resistant steel structures.
Drawing on experience from the Northridge to the Tohoku earthquakes, it combines understanding of the seismic behavior of steel structures with the principles of earthquake engineering. The book focuses on the global as well as local behavior of steel structures and their effective seismic-resistant design. It recognises different types of earthquakes, takes into account the especial danger of fire after earthquake, and proposes new bracing and connecting systems for new seismic resistant steel structures, and also for upgrading existing reinforced concrete structures.
    Includes the results of the extensive use of the DUCTROCT M computer program, which is used for the evaluation of the seismic available ductility, both monotonic and cyclic, for different types of earthquakes
    Demonstrates good design principles by highlighting the behavior of seismic-resistant steel structures in many applications from around the world
    Provides a methodological approach, making a clear distinction between strong and low-to-moderate seismic regions
This book serves as a reference for structural engineers involved in seismic design, as well as researchers and graduate students of seismic structural analysis and design

CONTENTS

Failure of a myth

The myth of steel as a perfect material for seismic-resistant structures
Behavior of steel structures during American and Asian earthquakes
Behavior of steel structures during the European earthquakes
Engineering lessons learned from the last strong earthquakes
References

Steel against earthquakes

Steel as the material of choice for seismic areas
Development of steel structural systems
References
Challenges in seismic design
Gap in seismic design methodologies
Earthquake types
Strong seismic regions
Low-to-moderate seismic regions
Proposals for improving the new code provisions
References

New generation of steel structures

Introduction
Improving existing solutions
New solutions of bracing systems
New solutions for connections
References
Advances in steel beam ductility
New concepts on structural ductility
DUCTROT-M Computer program
Monotonic available ductility
Local ductility under far-field earthquakes
Near-field earthquake effects on the available ductility of steel beams
Acknowledgments
References

Fire after earthquake

Introduction
Structural behavior under the effect of fire
From the historical events to date
Post-earthquake fire and risk management
Computational aspects
Analysis assumptions
Structural behavior
Methodology for assessing robustness
Conclusive remarks
References

Index

  • Páginas: 525
  • Tamaño: 17x24
  • Edición:
  • Idioma: Inglés
  • Año: 2013
  • PRECIO  130,00 Euros
 SI LO DESEA PUEDE EFECTUAR SU PEDIDO en www.ingenieriayarte.com


THE FOUNDATION ENGINEERING HANDBOOK


  ingenieria_arte: The Foundation Engineering Handbook

The Foundation Engineering Handbook

 Autor: Gunaratne,Manjriker


Considering how structures interact with soil, and building proper foundations, is vital to ensuring public safety and to the longevity of buildings. Understanding the strength and compressibility of subsurface soil is essential to the foundation engineer. The Foundation Engineering Handbook, Second Edition provides the fundamentals of foundation engineering needed by professional engineers and engineering students.
It presents both classical and state-of-the-art design and analysis techniques for earthen structures and examines the principles and design methods of foundation engineering needed for design of building foundations, embankments, and earth retaining structures. It covers basic soil mechanics, and soil and groundwater modeling concepts, along with the latest research results.
What’s New in the Second Edition:
    Adds alternative analytical techniques to nearly every chapter
    Supplements existing material with new content
    Includes additional applications in the state of the art such as unsaturated soil mechanics, analysis of transient flow through soils, deep foundation construction monitoring based on thermal integrity profiling, and updated ground remediation techniques
    Covers reliability-based design and LRFD (load resistance factor design) concepts not addressed in most foundation engineering texts
    Provides more than 500 illustrations and over 1,300 equations
The text serves as an ideal resource for practicing foundation and geotechnical engineers, as well as a supplemental textbook for both undergraduate and graduate levels.
"This book provides an up-to-date coverage of foundation engineering with useful material that is suitable for seniors and graduate students. It can also be used as a reference by the practicing engineer. The book is concisely and clearly written with many helpful examples. …Topics are appropriate as a foundation engineering textbook."
––Hsein Juang, Clemson University, South Carolina, USA
"This handbook is comprehensive and detailed. It presents the content in simple English and has enough background of modern engineering principles to use in a teaching setting. It is nice to see enough background in critical state soil mechanics combined with conventional foundation engineering techniques."
––Professor Ronaldo Luna, Missouri University of Science & Technology, Rolla, USA

Contents

Review of Soil Mechanics Concepts and Analytical Techniques Used in Foundation Engineering
Manjriker Gunaratne

In Situ Soil Testing
Austin Gray Mullins

Spread Footings: Analysis and Design
Manjriker Gunaratne

Geotechnical Design of Combined Spread Footings
Manjriker Gunaratne

Structural Design of Foundations
Panchy Arumugasaamy

Design of Driven Piles and Pile Groups
Manjriker Gunaratne

Design of Drilled Shafts
Austin Gray Mullins

Design of Laterally Loaded Piles
Manjriker Gunaratne

Construction Monitoring and Testing Methods of Driven Piles
Manjriker Gunaratne and Austin Gray Mullins

Retaining Walls: Analysis and Design
Alaa Ashmawy

Stability Analysis and Design of Slopes
Manjriker Gunaratne

Methods of Soft Ground Improvement
James D. Hussin

Impact of Groundwater on the Design of Earthen Structures
Manjriker Gunaratne

Index


  • Páginas: 727
  • Tamaño: 17x24
  • Edición:
  • Idioma: Inglés
  • Año: 2013
  • PRECIO   145,00 Euros
SI LO DESEA PUEDE EFECTUAR SU PEDIDO EN   www.ingenieriayarte.com